Technical Pitfalls in NCS/EMG

오 지 영 건국대병원

Check up

Before procedure

- 환자 병력 청취, 진찰
- 검사 이유 설명
- 검사 과정, 방법 설명
- Routine vs. special study

During procedure

- 체온 측정
- 환자 불편, 움직임 최소화

After procedure

• 검사 후 과정 설명

General features in NCS

Nerve conduction velocity

UE (50 m/s) > LE (40 m/s)

Proximal> Distal

Amplitude

Distal > Proximal

Short segment > long segment

Factors affecting NCS data

Physical factors

- body temperature
- height
- age

Technical factors

- electrode
- stimulation
- machine setting
- distance measure

Body temperature

- Most important factor effect of cool temperature
- Conduction velocity: 1.5-2.5 m/s/°C 감소
- Distal latency : 0.2 /°C 연장
- Amplitude : increased
- Duration : increased

Maintain skin temperature 32~34 ℃

Height Slower conduction velocity in taller individual Sural Nerve Bural Nerve Peroneal Nerve Peroneal Nerve Rivner MH, et al. Muscle Nerve 2001;24:1134-1141

- Full term infant NCV: 1/2 of adult
- 4 year : adult NCV
- > 40 y : decrease of 0.5 4 m/s/10y
- by age 70 :↓ SNAP up to 50%

Checkpoint in Nerve conduction study

- Stimulation
- Recording
- Measurement
- · Amplification/ filtering
- Display

Stimulation

Constant current stimulation (mA)

Cathode

- Negatively charged
- Depolarizes the axon
- Larger axons are more easily stimulated
- Myelinated axons are more easily stimulated

Anode

- positively charged
- Hyper-polarizes the axon
- Anodal block

Overstimulation

Result

- Erroneous high CMAP amplitude
- Alteration in CMAP morphology
- Inaccurate onset latency and CV
- Possibly mimicking anomalous innervation

Solution

- Reducing impedance with skin preparation
- Using sliding technique to localize the nerve
- Increasing stimulus intensity by small increment
- Observing waveform morphology
- Observing muscle contraction

Stimulation artifact

- Same type of active and reference electrode
- · Clean dirt and oil from skin
- Conducting electrode jelly
- · Firm contact electrode to skin
- Use coaxial recording cable

Antidromic vs. Orthodromic stimulation

Orthodromic technique

- low Amplitude
- high diagnostic yield
- same NCV

Antidromic technique

- high Amplitude
- low diagnostic yield
- same NCV
- muscle artifacts

Recording electrode

Surface - size matches source

- G1 varied size and shape
- G2 should have same characteristics as G1
- Ground "bigger is better"

Wires or connectors

- Black G1-"active"
- Red G2 "inactive" or "reference"
- Green ground

Recording electrode placement

Motor

"belly-tendon"

- G1: over the motor end plate (belly)
- G2: distal over the tendon
- Ground: between G1 and G2

Sensory

- G1: over the nerve
- G2: 3.5 to 4 cm farther along the course of the nerve
- Ground: between G1 and G2

Electrode position - motor

- Incorrect placement of active electrode
- Transposition of the active and reference electrodes
- 2 belly of muscle

If initial positivity of CMAP

Proximal and Distal stimulation sites:

- G1 not over endplate
- Atrophic muscle (nerve or muscle disease)

Proximal sites only:

- Check for overstimulation at the proximal site
- · Check for under-stimulation at the distal site
- Normal volume conduction from calf muscles

Electrode position - sensory

Distance measurement

- Ideal segment: > 10 cm
- Measured distance vs. anatomical distance
- Movement of skin
- Limb position

Electrode Impedance and Noise

60-Hz Artifact

- Same type of active and reference electr
- Clean dirt and oil from skin
- Conducting electrode jelly
- Firm contact electrode to skin
- Use coaxial recording cable

Filters

- Waveforms are buried in a "sea" of noise
- Ideally filters remove noise and have no effect on signal
- · High linear frequency filters low pass filters
- Low linear frequency filters high pass filters
- Band filters (i.e. 60 Hz)
- Tissue acts as a high frequency filter

Machine setting - Filter

Low frequency in CMAP

Machine setting - Filter

High frequency in SNAP

Display

Sensitivity

- ✓ Amplifier gain = Output/Input voltage
- Amplifier sensitivity = number of volts, millivolts, or microvolts per division
- ✓ Waveform displayed should be 2-3 divisions high

Sweep speed (time base)

✓ Motor: 2-5 ms per division
 ✓ Sensory: 1-2 ms per division
 ✓ F waves: 5-10 ms per division

Machine setting

Sweep speed and Latency

Machine setting

Recommended machine setting

	Filter	Sweep speed	Sensitivity	Stimulus duration
MNCV	2-10 kHz	2-5 ms	1-5 mV	0.1 ms
SNCV	20-2 kHz	1-2 ms	5-10 uV	0.1 ms
H-reflex	20-10 kHz	10 ms	0.5-1 mV	0.5-1 ms
F-wave	20-10 kHz	10 ms	0.2 mV	0.1 ms

Electrical safety issue

- Cardiac pacemaker, indwelling cardiac catheter, implanted cardioverters
 - ✓ contraindicated due to directly reach of the current to cardiac tissue
 - ✓ placing stimulator at least 15 cm away from sensor
- Routine NCS on patients with peripheral intravenous lines is safe
- Needle stimulation
 - ✓ Generally safe
 - Avoid at Erb's point (risk of brachial plexus injury or pneumothorax)

Summary

- Do check the default setting.
- Always consider technical factors when you face unexpected result.
- You should know every single physiologic and technical pitfall.
- · Test yourself regularly.