BBB dysfunction in neurodegenerative diseases # 이 필 휴 연세의대 # Phil Hyu Lee, MD, PhD Department of Neurology, Severance Biomedical Science Institute, Yonsei University ■ The integrity of the BBB is not homogenous within the brain # BBB breakdown in neurological diseases - Stroke - Brain Tumor - Inflammatory conditions # A population study on blood-brain barrier function in 85-year-olds Article abstract—We investigated blood—brain barrier (BBB) function in relation to Alzheimer's disease (AD) and vascular dementia (VAD) in the very elderly. Sixty-five 85-year-old persons from a population-based sample were followed for 3 years; 29 were demented at age 85 (13 with AD, 14 with VAD, and 2 with other dementias), 7 developed dementia during follow-yan, and 29 remained nondemented. CSF/serum albumin ratio was used as as a measure of BBB function. Dementia was defined according to the DSM-III-R, AD according to the NINDS-SADEDA criteria, and VAD | | All | | | Men | | | Women | | | |---|-----|---------------|------------|-----|----------------|------------|-------|---------------|------------| | | n | Mean ±
SD | p
Value | n | Mean ±
SD | p
Value | n | Mean ±
SD | p
Value | | No dementia at age 85 and 88 | 29 | 6.5 ± 2.0 | | 11 | 7.3 ± 1.9 | | 18 | 6.0 ± 1.9 | | | Dementia at age 85 | 29 | 8.5 ± 4.3 | 0.007 | 7 | 10.3 ± 4.2 | 0.063 | 22 | 8.0 ± 4.3 | 0.079 | | Dementia between age 85 and 88 | 7 | 8.3 ± 2.5 | 0.065 | 4 | 6.7 ± 1.3 | 0.555 | 3 | 10.4 ± 2.0 | 0.007 | | Dementia at age 85 or between age 85 and 88 | 36 | 8.5 ± 4.0 | 0.008 | 11 | 9.0 ± 3.8 | 0.216 | 25 | 8.3 ± 4.2 | 0.027 | | Cause of dementia at age 85 | | | | | | | | | | | Alzheimer's disease | 13 | 8.9 ± 5.3 | 0.046 | 4 | 9.6 ± 3.0 | 0.115 | 9 | 8.6 ± 6.2 | 0.149 | | Vascular dementia | 14 | 8.7 ± 3.5 | 0.002 | 2 | 14.5 ± 3.4 | 0.018 | 12 | 7.8 ± 2.6 | 0.046 | - more important contributor to MSA disease progression PRD, 2013 # Associated with genetic susceptibility? ELECTRONIC LETTER MDR1, the blood-brain barrier transporter, is associated with Parkinson's disease in ethnic Chinese C.G. L.Lee, K. Tang, Y.B. Cheung, L.P. Wong, C. Tan, H. Shen, Y. Zhao, R. Pavanni, E.J. D. Lee, M.-C. Wong, S. S. Chong, E.K. Tan J. Med. Genet. 2004.A1.ado (http://www.jmalgaret.com/cgi/content/hd/A1/5/e60). doi: 10.1136/jmg.2003.013003 ORIGINAL CONTRIBUTION Effect of MDR1 Haplotype on Risk of Parkinson Disease Eng. King Tan, MD; Daniel Kam-Yin Chan, MD; Ping. Wing Ng, MD; Joan Woo, MD; Y. Y. Teo, MSc; Kun Tang, BSc, Li-Peng. Wong, Dip; Samuel S. Chong, PhD; Chris Tan, BSc, Hai Shen, PhD; Yi Zhao, MD, PhD; Caroline G. L. Lee, PhD JBeaud 2009, 25411-190 DOI:10.0706/s11-090-0009-x ORIGINAL COMMUNICATION MDR1 variants and risk of Parkinson disease Association with pesticide exposure? # What's clinical significance or application? ### Good or bad ???? - Increased toxic proteins in peripheral circulation of AD and PD patients - defense mechanism for clearance of toxic proteins via altered BBB?? - epiphenomenon or resulted from disease pathogenesis ?? - Increased influx of endogenous antibodies against toxic proteins # An illustration-1 - Initially, presented with frontal behavior and then, followed by parkinsonism with prominent gait problems. - No amyotrophy 2006 Neuropathologic correlates of white matter hyperintensities - Vascular integrity Young et al, Neurology, 2008 | Approach | Therapeutics | Mechanism | Disease | Animal Model | Clinical Trials | Reference
Nos. | |-------------------------------------|---|--|---------------------------------|--|-----------------|--------------------| | BBB sealing | APC and its analogs | β-Arrestin-mediated
PAR1-biased
signaling | Stroke | Rodent stroke
models (arterial
occlusion, embolic
stroke) | Phase II | 208 | | | | | ALS | SOD1 mutant
models | NA | 208 | | | Glucocorticoids | Upregulation of
intercellular
junctional proteins,
suppression of
MMPs and
inflammation | Niemann-Pick
disease, type C | NPC1 | NA | 500 | | Eliminating | Ancrod | Depleting fibrin(ogen) | AD | TgCRND8 | NA | 452 | | consequences
of BBB
breakdown | | | MS | EAE | | 126 | | | Deferoxamine
Glutathione
monoethyl
ester | Iron chelation
Antioxidant | ALS | SOD1 (G93A) | NA | 624 | | | APC and its
analogs | PI3K/Akt-mediated
neuroprotection, | Stroke | MCAD, dMCAD,
embolic stroke | Phase II | 508 | | | | endothelial
protection | ALS | SOD1 mutants | NA | 208 | | Enhancing | LRP1 minigene | Improve efflux | AD | Tg2576 | NA | 624 | | clearance
function | RAGE inhibitor
(Azeliragon) | Reduce influx | | | Phase III | 128 | | | Allopregnanolone | Promoting Aβ and cholesterol clearance | | 3xTgAD | Phase I | 79 | | Cell therapy | Mesenchymal
stem cells
transplantation | Improve BBB functions | CNS injuries | Rodent experimental
models | NA | 250,
448
559 | | | Pericytes
transplantation | | ALS | SOD1 | | 110 | | | | - 11 | raversır | ig BBB | tor a | rug deli | very | , | | |--------------------|------------------------------|-------|------------------------------|---|--|---|-------------------------------------|--|---| | | Direct opening of
the BBB | | Focused | Doxorubicin | Doxorubicin delivery To promote therapeutic delivery Entrap within or covalently bind to drugs LAT-1 large amino acid transporter | | | Multiple species as
models | nd Phase I | | | | | | To promote
therapeut | | | AD
PD | | Phase I | | Colloidal carriers | | miers | Nanoparticles
Exosome | covalently | | | A broad spectrum of
CNS diseases | | nd Phase 1
NA | | | CMT
RMT | | L-DOPA | | | | | | FDA appro | | | | | Bispecific antibodies | Anti-TfR-BA0
Anti-TfR-Aβ | | | AD | | | | | | | Molecular Troja
horses | | L-Iduronidase fused
with anti-TfR | | Mycopolysaccharoidosis | | Phase II | | | | | | | Iduronate 2 sulfatase
fused with anti-IR | | Mycopolysaccharoidosis | | Phase I | | | Viral vectors | s and | Gene delivery | Brain tropic
variants | evaa | PD | | TgSNCA-A53T
mouse | NA | | | | | MR-gu | uided fo | cuse | d ultras | oun | d | | | Indicat | ion | Stag | ge Subtype | US treated region | Drug | End points | US Dev | rice/US parameters | Status | | Neurod | legenerative
se | Phase | I Mild to
moderate
PDD | Right parieto-
occipito-
temporal lobes | No | Safety, feasibility
of BBBD | ExAblate | e* (InSightec) 220 kHz | Recruiting
(NCT03608553 | | | | | I Mild AD | Frontal lobes | No | Safety, feasibility
of BBBD, Δ Aβ
plaques | | e* (InSightec) 220 kHz
r stage 1 4.5 W for
2 | Completed and
published ⁷¹⁾
(NCT02986932 | | | | | I/II Mild AD | Left
supramarginal
gyrus | No | Δ glucose
metabolism,
safety of BBBD | SonoClo | | Recruiting
(NCT03119961) | | | | Phase | I ALS | Primary motor
cortex | No | Safety, feasibility
of BBBD | ExAblate | | Recruiting
(NCT03321487 | # What can we do? - Semiconclusions - BBB alteration may be region-specific, depending on disease status?? - Reflect disease progression ?? - One of valuable targets for neuroprotective strategies??