Botox treatment in CM prophylaxis from practice to rationale

박 미 영

영남대학교 의과대학 신경과학교실

Edvard Munch, 절규 The Scream

ICHD-3beta criteria for chronic migraine

- A. Headache \geq 15days for $3 \geq$ Month
- B. Patient had ≥attacks fulfilling ICHD -2 migraine without aura
- C. On ≥8 day/month for >3months headache fulfills criteria for migraine w or w/o aura and /or treated and relieved by triptan(s) or ergot
- D. Not better accounted for by another ICHD-3 diagnosis
- CM and medication overuse should have both diagnoses

하루에 4시간 이상 지속되는 두통이 한 달에 15일 이상 최소3개월 전부터 지속되는 경우

Pathophysiology of Migraine Trigeminovascular Migraine Pain Pathways

Hargreaves RJ, Shepheard SL. Can J Neurol Sci. 1999;26(suppl 3):S12-S19.

Botox in CM from concept to clinical study ONT-A as a migrail e 1st MEDLINE citation: Allergan *Early* Phase II 1st MEDLINE citations: preventative treatme "Botulinum & HA "Botulinum & Wrinkles investigation studies Open-label study (*Bir der WJ*)⁵ & Double-Blind" & Double-Blind" (Keen M)¹ begin (Binder W)3 Double-blind study (Relja MA) 4 Silberstein S)6 "Botulinum & HA" (Zwart JA)² 1998 1999 2000 Late Phase II Allergan PREEMPT PREEMPT Phase III Late Phase II development study published⁹ Phase III Phase III studies in CDH investigation Study initial 56-week study studies begin (Mathew NT. published¹¹ First licence reports Dodick DW)^{7,8} approval - BOTOX® in chronic migraine 1. Keen M et al. Plast Reconstr Surg 1994;94:94-9. 2. Zwart 3A et al. Headache 1994;34:458-62. 3. Binder W et al. Mov Disord 1998;13(Suppl 2):241. 4. Relja MA et al. Neurology 1999;52(Suppl 2):A203 P03.035. 5. Binder WJ et al. Otolaryngol Head Neck Surg 2000;123:669-76. 6. Silberstein S et al. Headache 0.004.04.45-50. 7. Mathew NT et al. Headache 2005;45:293-07. 8. Dodick DW et al. Headache 2005;45:315-24. 9. Dodick DW et al. Headache 2010;50:921-36. 10. Allergan Summary of Product Characteristics. Allergan Ltd. 2011. 11. Aurora SK et al. Headache 2011;51:1358-73.

Botulinum toxin A therapy for migraine prophylaxis starts from retrospective study..... by WJ Binder, 1992

Type of treatment administered and migraine classification of patients treated with BOTOX (n=106)

Migranine	Prophylatic Acute		Both prophylactic	
Classification*	Prophylatic	Acute	and acute	
True	69	2	8	
Possible	15	2	1	
Non	9	0	0	

- · Based on self-reported baseline headache histories and International Headache Society criteria for migraine aura.
- Mean dose 31.0 u (5-110 u)

· Result in true migraine

Acute TX: 70% complete response 1 to 2 hrs after TX(7/10) Prophylactic TX: 51% complete response (dm 4.1 mo)

38% Partial response (>50%) (dm 2.7 mo)

Why it is unlikely pain relief is a placebo effect?

- Binder's patients were not expecting change in their migraine pattern
- Sustained effect
- Central desensitization effect (aura, N/V, allodynia)

BOTOX® for Migraine: Study Design (Allergan Sponsored)

- Randomized, multicenter, double-blind, vehicle-controlled, parallel-group study
- 3 pericranial muscle regions injected
 - Total of 11 injection sites
- 3 dose groups: vehicle, 25 U BOTOX®,
 75 U BOTOX®

(Silberstein, headache, 2000)

n=123, 25U/75U

Fig 2.—Mean decrease from baseline in the number of moderate-to-severe migraines per month. Asterisks indicate that the 25-U BTX-A group was significantly different from the vehicle group at 2 and 3 months postinjection ($P \le .042$).

Fig 4.—Mean decrease from baseline in the maximum severity of migraines (rated on a 0-to-3 scale). Asterisks indicate that the 25-U BTX-A group was significantly different from the vehicle group at 1 and 2 months postinjection ($P \le .029$).

[≜]Because of lower frequency (#2-8/Mo) of migraine at baseline (except GA) Vomiting improved

(Silberstein headache, 2000)

Evidence: Mechanism of action of BTX A in relieving headache

Hypothesis Modulating trigemino vascular reflex not only muscle relaxation itself

M.Y. Park 2001, seoul

Dual effect

- 1. Peripheral antinociception
- 2. Indirect central desensitization

2002년 11월 영남대학교의료원 신경과 Daegu

Objectives

To assess the safety & efficacy in the prophylaxis of migraine

Subjects & Methods

N=19(M:F=7:12), mean age 41yrs (18-61)

Ds duration 14yrs(5.1)

*Migraine with aura: without aura = 8:11(IHS)

BOTOX®(Allergan): 48 IU(±5.5) Follow up: Every 4wks for 24wks Data analysis: Stata ver. 6.0

Generalized estimating equation method

(박미영, 대한신경과학회, 2002)

Evaluation parameters

Reducing or eliminating daily chronic headache, medications or either prophylaxis/or acute treatment

Frequency change
Severity change
Reduction of medication

Global Assesment of Improvement (0-100%)

Aura Nausea/Vomiting Side effects

> M.Y. Park 2001, seoul

Method

- No established or standardized methodology
- Approach (Andrew, 2003)
 - fixed site
 - followed the pain
 - combination

sex	age	duration of disease(yrs)	cafergot overuse	change of frequency	change of severity	aura	N/V(0-4)	GAI(0-100%)
F	18	5	+	15 → 12	-30%	-	2 →0	30%
М	48	10	+	20 → 7	-50%	$+ \rightarrow -$	3 →1	60%
М	43	20	+	$3/D \rightarrow \downarrow$	-20%	-	4 → 0	20%
М	34	20	+++	0	0	+ -> +	2 → 2	0
М	50	2	_	1/D →	-70%	+	1 → 0	60%
F	61	30	-	1/D →	-20%	+ -> -	2 → 1	20%
F	52	27	-	4/D →1/D	-60%	$\pm \rightarrow -$	$3 \rightarrow 0$	60%
F	50	20	-	20 → 10	-30%	-	3 → 2	50%
М	57	15	-	54 → 18	-70%	-	$3 \rightarrow 0$	80%
М	32	17	_	8 →5	-90%	_	3 →0	90%
М	21	10	_	8 → 5	-80%	+ →-	2 →0	90%
F	29	61	-	8 →0	-90%	-	2 → 0	100%
F	51	20	-	2 → 0	-90%	+ ->-	4 → 0	100%
М	18	5	-	12 → 3	-90%	+ ->-	$3 \rightarrow 0$	100%

Interpretation, Patient selection

- Cafergot addictor
- Associated nausea improving
- · Elimination (but migraineous episodes without pain)
- Lesser frequency \rightarrow more effective to BTX TX
- Mixed headache
- 1yr. followed Pt.

M.Y. Park

Adverse effects &...

- Blepharoptosis
- Lateral eye brow elevation (Mephisto sign)
- · Weakness sensation of chewing
- Frontal heaviness
- Headache

"Mephisto sign" 일명 사무라이 눈썹

Conclusion

BTX A is shown to be benificial therapeutic agent in migraine, but

- Optimal dose, site of injection, injection interval &
- Appropriate patient selection characteristics should be further investicated

PREEMPT STUDY 2011 for CM

Phase 3 REsearch Evaluating Migraine Prophylaxis Therapy

- 155-195u
- Phase Ⅲ
- 1.384 subjects, 122 center north America, EU
- injection every 12WK: 2cycle +3cycle open label
- **HIT-6** severe (≥60) HIT-6 category score
- MSQ v.21 (HRQoL) 3 domain scores

HIT: Headache Impact Score MSQ: Migraine-specific quality-of-life questionnaire

PREEMPT 2010 Pooled data

24-week, double-blind, parallel-group, placebo-controlled phase followed by a 32-week, open-label phase (a Phase III study)

PREEMPT I

Injections every 12 weeks of onabotulinumtoxin A (155 U-195 U: n=341) or placebo (n=338) (two cycles).

- The primary endpoint: mean change from baseline in headache episode frequency at week 24. - No significant
- the secondary endpoints: headache days (p=.006) and migraine days((p=0.002)reduction

PREEMPT II

- a phase 3 study, with a 24-week, doubleblind, placebo-controlled phase, followed by a 32-week, open-label phase.
- Subjects were randomized (1:1) to injections of onabotulinumtoxin A (155U-195U; n=347) or placebo (n=358) every 12 weeks for two cycles.
- The primary efficacy endpoint: mean change in headache days per 28 days from baseline to weeks 21–24 post-treatment.
- The secondary efficacy endpoint: frequency of migraine days, frequency of moderate/severe headache days, monthly cumulative headache hours on headache days, proportion of patients with severe Headache Impact Test (HIT)-6 score, frequency of headache episodes, acute headache pain medication intakes, HIT-6 score, MSQ v2.1, HIS.

Cephalalgia 30(7) 793-803 Aurora et al.

Cephalalgia 30(7) 804-814, Diener et al. 2010

Efficacy of onabotulinumtoxinA at week 24 - PREEMT trial II

Endpoint	OnabotulinumtoxinA (n = 347)	Placebo (n = 358)	Mean intergroup difference ^{ll}	p value [∥]
Change from baseline in frequency of headache days*†	-9.0	-6.7	-2.3 (-3.25, -1.31)	<.001
Change from baseline in frequency of migraine days ^{†‡}	-8.7	-6.3	-2.4 (-3.31, -1.36)	<.001
Change from baseline in frequency of moderate/severe headache days [†]	-8.3	-5.8	-2.5 (-3.37, -I.48)	<.001
Change from baseline in cumulative total headache hours on headache days [†]	-132.4	-90.0	-42.4 (-58.23, -21.05)	<.001
% Patients with severe (≥60) HIT-6 score ^{†§}	66.3	76.5	-10.2 (-16.9, -3.6)	.003
Change from baseline in frequency of headache episodes [†]	-5.3	-4.6	-0.7 (-1.65, -0.33)	.003
Change from baseline in total HIT-6 scores†§	-4.9	-2.4	-2.5 (-3.54 , -1.55)	<.001
Change from baseline in frequency of acute headache pain medication intakes (all categories)	-9.9	-8.4	-1.5 (-3.77, 0.49)	.132
Change from baseline in frequency of triptan intake	-3.0	-1.7	-1.3 (-2.24, -0.6)	<.001

HIT, Headache Impact Test. *Primary efficacy endpoint. †Significant between-group differences favouring onabotulinumtoxinA. †International Classification of Headache Disorders, II I.1 (migraine without aura), I.2 (migraine with aura), I.5 (probable migraine) (I). 5 Coores of 36-49 indicate little or no impact; 50-55, some impact; 56-59, substantial impact; \geq 60, severe impact. $^{\parallel}$ The 95% confidence intervals and p values are adjusted for baseline and for medication overuse stratification.

Cephalalgia 30(7) 804-814, Diener et al. 2010

PREEMPT: Study design of two phase 3 studies of chronic migraine patients

- Largest clinical program on Chronic Migraine sufferers (1384 patients)
 - 122 sites in North America and Europe; 11 sites in Canada
 - -24주 무작위 이중맹검 위약대조 후 32주 개방표지 3상 임상연구

 Headache symptoms and medications were recorded in a daily telephone diary

Blumenfeld et al. Headache. 2010;50:921-936...

Injection site

Distribution & areas innervated by of trigeminal sensory system

Injection Paradigm

Order of injection and patient position: FSFD

The anatomic injection sites follow distributions and areas innervated by the trigeminal nerve complex

0.1 mL = (5 U/site). 2ml 희석 30G 0.5inch needle Blumenfeld AM et al. Headache 2010;50:1406-1418.

Total 31points 155 U

Follow-the-pain muscle areas of maximal tenderness and/or pain.

Total 39points 195 U

Pooled baseline demographics

	Botulinum toxin Type A (n=688)	Placebo (n=696)
Mean age, years	41	42
Mean years since onset of CM	19	19
Female, %	88	85
Caucasian, %	90	91
Mean HA days (SD)	20 (4)	20 (4)
Mean migraine days (SD)	19 (4)	19 (4)
Mean moderate/severe HA days (SD)	18 (4.1)	18 (4.3)
Mean cumulative hours of HA occurring on HA days (SD)	296 (117)*	281 (115)*
Mean HIT-6 score	66	65
% Patients with severe (≥ 60) HIT-6 score	94	93
Mean HA episodes (SD)	12 (5)*	13 (6)*
Mean migraine episodes (SD)	11 (5)*	12 (5)*
% Patients overusing acute HA pain medication	65	66

HA = headache; HIT = Headache Impact Test. *p<0.05.

Dodick DW et al. Headache. 2010;50:921-936.

Pooled efficacy of Botulinum toxin Type A at week 24 (primary time point)

Endpoint, Mean Change From Baseline	Botulinum toxin Type A (n=688)	Placebo (n=696)	p Value*
Frequency of HA days	-8.4	-6.6	<0.001
Frequency of migraine days	-8.2	-6.2	<0.001
Frequency of moderate/severe HA days	-7.7	-5.8	<0.001
Total cumulative HA hours on HA days	-119.7	-80.5	<0.001
% Patients with severe (≥60) HIT-6 score	67.6	78.2	<0.001
Total HIT-6 score	-4.8	-2.4	<0.001
Frequency of triptan use	-3.2	-2.1	<0.001

Botulinum toxin Type A was statistically significantly more effective than placebo in reducing mean frequency of headache days at every visit in the double-blind phase starting at the first post-treatment study visit (Week 4).

HA = headache; HIT = Headache Impact Test.

Dodick DW et al. Headache. 2010;50:921-936

^{*}p values are adjusted for baseline and for medication overuse stratification.

PREEMPT pooled analysis: Change in headache days - primary

~70% of patients* achieved ≥50% reduction in headache days at 56 weeks1

*Patients who received Botulinum toxin Type A throughout the 56-week treatment program Mean ± standard error.

The double-blind phase included 688 subjects in the Botulinum toxin Type A group and 696 in the placebo group.

Headache days at baseline: 19.9 Botulinum toxin Type A group vs 19.8 placebo group, p=0.498. 1. Aurora et al. Headache. 2011 51(9):1358-7

PREEMPT pooled analysis:

Botulinum toxin Type A reduced cumulative headache hours on headache days

Mean ± standard error.

The double-blind phase included 688 subjects in the Botulinum toxin Type A group and 696 in the placebo group. Cumulative hours of headache at baseline: 295.9 Botulinum toxin Type A group vs 281.2 placebo group, p=0.021. HA = headache

Aurora et al. Headache. 2011 51(9):1358-7

~70% of Patients* Achieved ≥50% Reduction in Headache Days at 56 Weeks¹

Patients Treated With Botulinum Toxin Type A Averaged 8 Fewer Migraine Days/Month Compared to Baseline at Week 24

The double-blind phase included 688 subjects in the botulinum toxin type A group and 696 in the placebo group. Migraine days at baseline: 19.1 botulinum toxin type A group vs 18.9 placebo group, p=0.328

Data on file. Allergan, Inc.
 Aurora SK et al. Presented at IHC 2009.

PREEMPT: Summary of adverse events pooled data, double-blind phase (%)

	Botulinum toxin Type A (n=687)	Placebo (n=692)
All adverse events (AEs)*	62.4	51.7
Treatment-related AEs [†]	29.4	12.7
Serious AEs	4.8	2.3
Treatment-related, serious AEs [†]	0.1‡	0.0
Discontinuations related to AEs§	3.8	1.2
Deaths	0.0	0.0

Dodick DW et al. Headache. 2010; 50:921-936.

PREEMPT: Botulinum toxin Type A is a welltolerated treatment for chronic migraine

- No new treatment-related AEs were identified
- Most AEs were mild or moderate in severity and resolved without seguelae

	Botulinum toxin Type A (n = 687)	Placebo (n = 692)
Neck pain	60 (8.7)	19 (2.7)
Muscular weakness	24 (5.5)	2 (0.3)
Headache	32 (4.7)	22 (3.2)
Migraine	26 (3.8)	18 (2.6)
Musculoskeletal stiffness	25 (3.6)	6 (0.9)
Eyelid ptosis	25 (3.6)	2 (0.3)
Injection-site pain	23 (3.3)	14 (2.0)
Myalgia	21 (3.1)	6 (0.9)
Musculoskeletal pain	18 (2.6)	10 (1.4)
Facial paresis	15 (2.2)	0 (0.0)

Dodick DW et al. Headache. 2010: 50:921- 936

^{*}All AEs include all reported events, regardless of relationship to treatment.

[†]Treatment-related AEs are those that in the investigator's opinion may have been caused by the study medication with reasonable possibility. ‡Migraine requiring hospitalization.

^{\$}The most frequently reported AEs leading to discontinuation in the BOTOX® group were neck pain (0.6%), muscular weakness (0.4%), headache (0.4%), and migraine (0.4%).

PREEMPT subgroup analysis: CM+MO Botulinum toxin Type A is an effective treatment for chronic migraine patients who overuse acute pain medications

Change from baseline in headache characteristics, impact and health-related quality of life at Week 24 in the chronic migraine with acute headache medication overuse subgroup.

Mean change from baseline, variable	CM + MO			
	OnabotulinumtoxinA (n = 445)	Placebo (n = 459)	p value ^a	
Frequency of headache days (SE)	-8.2 (0.30)	-6.2 (0.31)	< 0.001	
Frequency of migraine ^b days (SE)	-8.1 (0.30)	-6.0 (0.31)	< 0.001	
Frequency of moderate/severe headache days (SE)	-7.7 (0.29)	-5.7 (0.31)	< 0.001	
Total cumulative hours of headache on headache days (SE)	-114.5 (5.77)	-70.8 (6.08)	< 0.001	
% patients with severe (≥60) HIT-6 score ^{c,d}	71.0	81.9	< 0.001	
Frequency of headache episodes (SE)	-5.4 (0.26)	-5.1 (0.25)	0.028	
Frequency of migraine ^b episodes (SE)	-5.1 (0.25)	-4.8 (0.25)	0.018	
Frequency of AHM intakes ^e	-13.1 (0.90)	-11.8 (0.89)	0,210	
Total HIT-6 score ^c	-4.7 ^f	-2.2 ^f	< 0.001	
% patients achieving ≥5-point reduction in HIT-6 score ^{c,d}	38.7	23.3	< 0.001	
MSQ scoreg: Role function-restrictive	16.9 ^h	7.6 ^h	< 0.001	
MSQ score8: Role function-preventive	13.9 ^h	5.8 ^h	< 0.001	
MSQ scoreg: Emotional functioning	18.3 ^h	8.7 ^h	< 0.001	

AHM = acute headache medication, HIT = Headache Impact Test, HRQoL = health-related quality of life, ICHD = International Classification of Headache Disorders, MSQ = Migraine-Specific Quality of Life questionnaire.

a $p \le 0.05$ is statistically significant. The p values are adjusted for baseline.

- b ICHD-II 1.1 (migraine without aura), 1.2 (migraine with aura), 1.6 (probable migraine) [1].

 HIT-6: scores 36-49 = little or no impact; 50-55 = moderate impact; 56-59 = substantial impact; 60-78 = severe impact.
- d Statistics are raw score, not change from baseline.
- e Intakes denote the number of times that a patient self-treated with an acute medication, not the amount of medication(s) taken. An intake occurred each time a patient sought relief, regardless of the number of medications or doses taken at the same time.

 f Difference between the groups exceeds the established minimally important between-group difference [27].
- g MSQ scores range from 0 (poor HRQoL) to 100 (good HRQoL).
- h Difference between groups exceeds minimally important differences for each MSQ domain [31].

MO: medication overuse

Journal of the Neurological Sciences 331 (2013) 48-56 Stephen D. Silberstein et al.

Treatment Effect Size Compared to Other **Treatments**

	50% Responder Rate (Active / Placebo); NNT	Discontinuation Due to Adverse Events	Migraine/ Migrainous Days; Absolute Between-Group Difference
Botulinum Toxin Type A ¹	47% / 35%* 8	3.8%	-8.2 (2.0)
Topiramate ^{2,3}	37% / 29%* 12.5	10.9%	-6.4 (1.7)

^{≥50%} reduction in mean monthly migraine days.

These were not comparison studies. The topiramate data come from a double-blind study assessing topiramate efficacy in Chronic Migraine patients, and the botulinum toxin type A data come from the pooled results of the PREEMPT studies

NNT = Number Needed to Treat.

- 1. Dodick DW et al. Headache. 2010:50:921-963.
- 2. Silberstein SD et al. Headache. 2009;49:1153-1162.
- 3. Silberstein SD et al. Headache. 2007:47:170-180.

STUDY PROTOCOL

n Access

Unmet clinical needs in chronic migraine: Rationale for study and design of COMPEL, an open-label, multicenter study of the long-term efficacy, safety, and tolerability of onabotulinumtoxinA for headache prophylaxis in adults with chronic migraine

Andrew M. Blumenfeld^{1*†}, Sheena K. Aurora^{2*†}, Karen Laranjo³ and Spyros Papapetropoulos⁴

Study objectives for COMPEL

Primary Objective

To assess mean change from baseline in the frequency of headache days per 28-day period at 108 weeks (following 9 treatments) using a patient diary completed via IVRS.

Secondary Objectives

To assess mean change from baseline in the frequency of headache days for the 28-day period ending at 60 weeks (following 5 treatments).

To assess the efficacy of onabotulinumtoxinA treatment for CM in adult patients as measured by the mean change from baseline in total HIT-6 score over a 4-week period at 108 weeks (following 9 treatments) and at 60 weeks (following 5 treatments).

To evaluate the long-term safety and tolerability (9 treatment cycles) of onabotulinumtoxinA for CM in adult patients.

CM = chronic migraine; HIT-6 = Headache Impact Test-6; IVRS = interactive voice

Hypothesis OnabotulinumtoxinA antinocicepton

- The exact mechanism of onabotulinumtoxinA in antinociception has not been fully elucidated
- Animal and human studies indicate that onabotulinumtoxinA inhibits the release of nociceptive mediators^{1,2,5}:
 - -cGRP
 - Glutamate
 - Substance P
- · Blocking release of these neurotransmitters inhibits neurogenic inflammation; this, in turn, inhibits peripheral sensitization of nociceptive nerve fibers^{1,5,6}
- · As a result, peripheral pain signals to the central nervous system are reduced and, indirectly, central sensitization is blocked^{1,6}

cGRP = calcitonin gene-related peptide

- Aoki KR, Headache. 2003;43(suppl 1):S9-S15.
 Aoki KR, Neurotoxicology. 2005;26:785-793.
 Cui M. Pain. 2004;107:125-133.
 Durham PL. Headache. 2004;44:35-42.
 Gazerani P. Pain. 2006;122:315-325.
 Gazerani P. Pain. 2009;141:60-69.

Summary: BOTOX is efficacious and well tolerated in chronic migraine

- BOTOX is the proven preventive medication in the treatment of Chronic Migraine
- In PREEMPT clinical trials, treatment with BOTOX resulted in highly significant improvement versus placebo for multiple headache symptom measures in CM patients
- In the PREEMPT clinical trials, treatment with 155U to 195U of BOTOX every 12 weeks was found to be safe and well tolerated with low discontinuation rates due to AEs
 - Serious AEs were reported in 4.8% of BOTOX patients and 2.3% of placebo patients
 - Most BOTOX treatment-related AEs are transient and mild to moderate in severity
 - BOTOX is a focal treatment; systemic side effects and drug interactions are rare

However, a few considerations remain need to be researched in practice

Dodick DW et al. Headache, 2010: 50:921-936 Aurora et al. Headache. 2011 51(9):1358-7 Blumenfeld AM et al. Headache 2010;50:1406-1418