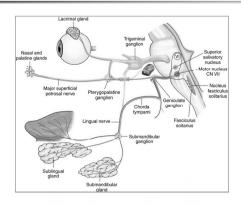
1년차가 알아야 할 신경근육질환


Jeeyoung Oh

Department of Neurology, Konkuk University School of Medicine

이 강의가 끝나면 여러분들은,

- 1 Facial palsy를 진단하고 치료할 수 있다.
- 2 Guillain-Barré syndrome을 진단하고 치료할 수 있다.
- 3 Myasthenia gravis를 진단할 수 있다.
- 4 Wrist drop과 foot drop의 원인을 감별할 수 있다.
- 5 스테로이드와 면역글로불린을 올바로 사용할 수 있다.

Anatomy of Facial Nerve

Treatment of Bell's palsy

- Prednisolone 1 mg/kg/day (up to 70 mg/day) for 6 days, then tapering off over subsequent 4 days
- Antiviral agent (?)

- Variable results in electrical stimulation
- Minimal positive evidence for facial exercise

No well-designed studies

Facial nerve decompression

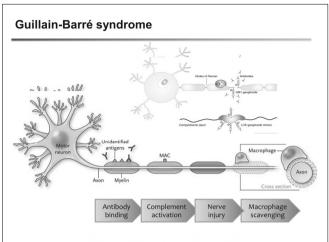
Treatment of Bell's palsy

For new-onset (72-hrs of symptoms) patients,

- Steroids are highly likely to be effective and should be offered to increase the possibility of recovery of facial nerve function.
- Antiviral agents in combination with steroids do not increase the
 probability of facial function recovery by > 7%. Patients might be offered
 antivirals in addition to steroid, and should be counseled that the benefit
 has not been established and its benefit id modest at best.

AAN. Neurology (2012)

Clinical Vignette (1)


- M/ 40
- 주호소: 3일 전부터 진행하는 사지 위약감
- 병력

2 주전 제주도 여행 중 감기가 심하게 걸려 일주일간 앓음 3 일전 발가락 끝이 저리면서 걸을 때 발목을 자주 접지름 전일부터는 양 손아귀 힘이 빠지면서 물건을 자꾸 놓침

• 신경계진찰

Symmetric distal and proximal weakness with bilateral facial palsy Generalized areflexia

Normal sensory and cerebellar function

Guillain-Barré syndrome

• Demonstration of elevated spinal fluid protein without cells (albuminocytologic dissociation) in the two paralyzed French soldiers

- Georges Guillain, Jean-Alexandre Barré, Andre Strohl (1916)

Typical time course of GBS Neurological deficit Antecedent illness 4 weeks onset time Regression Dull ache in back or neck Facial or bulbar weakness Diminished or absent DTR Respiratory insufficiency

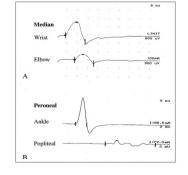
→ MEMO →

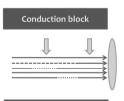
Clinical criteria for GBS

- Symmetric weakness of more than one limb
- Absent or reduced tendon reflexes
- Progression over maximum 4 weeks
- Mild sensory involvement
- Cranial nerve involvement (60 %)
- Autonomic dysfunction (15 %)
- Respiratory failure (up to 25 %)
- NO sensory level, sphincter dysfunction, persistent asymmetry

(Asbury AK, et al. Ann Neurol 1990)

Laboratory criteria for GBS


CSF cell


Acellular or mild lymphocyte-dominant pleocytosis (<50/mm³) Rapid decrease in the disease course Persistent pleocytosis refer alternative or additional diagnosis

CSF Protein

Albumino-cytologic dissociation Normal during the first few days of symptom 80 % one week or more after onset Peak in 4 to 6 weeks

Nerve conduction study in GBS

Temporal dispersion

Treatment of GBS

- Give general good care
- Frequent watch for respiratory failure
 - ⇒ parallel with weakness of shoulder elevation and neck flexion
- IV immunoglobulin (0.4g/kg/day for 5 days) within first two weeks Severely affected patients (inability to walk unaided) Secondary deterioration after initial improvement or stabilization
- Plasma exchange
 - 200 mL/kg/ day E.O.D 4-5 times Sepsis, shock, air embolism

Signs and symptoms of respiratory failure

- Morning headaches
- Excessive daytime sleepiness
- Frequent nocturnal arousals
- Lack of restful sleep
- Dyspnea on exertion
- Orthopnea
- Staccato speech
- Weak cough

- Difficulties handling secretions
- Restlessness
- Hyperhidrosis
- Tachypnea
- Tachycardia
- Weak neck flexion/extension
- Accessory muscle use
- · Paradoxical breathing

Objective measure of respiratory failure

- Breath count < 20 (< 2 L)
- FVC < 20 mL/kg
- MIP(NIF) > 30 cm H2O
- MEp < 40 cm H2O
- Hypoxemia (late sign)
- Hypercapnia (late sign)

FVC, forced vital capacity; MEP, maximal expiratory pressure; MIP, maximal inspiratory pressure; NIF, negative inspiratory force → MEMO →

Interventions of respiratory failure

- NPO for patients with dysphagia/risk of aspiration
- Noninvasive ventilation, typically BiPAP with adequate airway protection
- Invasive ventilation
- Serial MIP/NIF and FVC monitoring to aid in decisions on extubation

BiPAP, bilevel positive airway pressure

Prognosis of GBS

- Two thirds of patients are unable to walk in maximum weakness
- 20 % of patients remain unable to walk 6 months after onset
- Adverse prognostic factor

Older age onset (> 50 yrs)

Bed-ridden or mechanical ventilation at nadir

Rapid progression

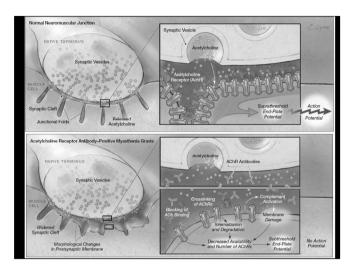
Preceding diarrhea

Axonal loss in electrophysiological study

Low serum IgG level after IVIg administration

Clinical Vignette (2)

- F/ 35
- 주호소: 2달 전부터 시작된 피로감, 3일전부터 시작된 좌측 안검하수와 복시
- 병력, 과거력: 특이 사항 없음
- 신경계진찰


Ptosis (OS)

Isocoric pupil

Limitation of extraocular movement – fluctuating

Normal sensory function

Normoactive tendon reflex

Clinical features of MG

- Fluctuating weakness (fatigue), worsened in the late of day or after exercise
- Ocular palsies diplopia, ptosis, Cogan's lid twitching
- Facial and bulbar weakness reduced facial expression difficulty in mastication and swallowing
- Proximal muscle weakness

Edrophonium (Tensilon®) test

- Improved strength after administration of anticholinesterase
- Positive more than 90% in generalized MG
- Neostigmine (1.0-1.5 mg) or pyridostigmine (2-3 mg)
- Compare pre- and post- (20-30 minutes) administration
- Pretreatment with atropine (0.5 mg) S.C
- False-positive : brain tumor, ALS, GBS
- False-negative: insufficient injection dosage

vs. Ice pack test

How to measure - Ocular

Normal eyelid and eye

Palpebral fissure

Normal when there is no ptosis or diplopia on the lateral gaze > 60 sec

How to measure - Extraocular

Test Items Weakness (Score)	None (o)	Mild (1)	Moderate (2)	Severe (3)
Facial muscles	Normal lid closure	Complete, weak, some resistance	Complete, without resistance	Incomplete
Swallowing 4 Oz / 120 ml water		Minimal coughing or thoat cleaning	Severe coughing /choking or nasal regurgitation	Cannot swallow (Test not attempted)
Speech following counting aloud from 1-50 (onset of dysarthria)	None at #50	Dysarthria (#30-49)	Dysarthria at #10-29	Dysarthria at #9
Arm outstretched (90° sitting)	240	90-239	10-89	0-9
Head, lifted (45°supine)	120	30-119	1-29	0
Leg outstretched (45°supine)	100	31-99	1-30	0

Laboratory test for MG

Acetylcholine receptor antibody

 $85\,\%$ of generalized MG and 60 % of ocular MG patients No correlation with the severity of disease Seronegative patients (anti-MuSK antibody)

• Repetitive nerve stimulation test (Jolly test)

Decremental response Normal response in ocular MG


Normal

MG

Thymus in MG

- Thymic hyperplasia (65 %)
- Thymoma (10-15 %)
- Thymectomy is never, never, never emergency!!!

Drugs inducing or exacerbating myasthenic weakness

Category	Drugs
Anesthetic agent	Nondepolarizing neuromuscular blocking agents Local anesthetics (e.g., procaine, xylocaine)
Antibiotics	Aminoglycosides (e.g., gentamycin, tobramycin) Beta-lactamase (e.g., ampicillin, penicillin) Fluoroquinolones (e.g., ciprofloxacin, norfloxacin) Macrolides (e.g., azithromycin, erythromycin) Sulfonamides, Tetracyclines, Clindamycin Others (e.g., polymyxin B, vancomycin)
Anti-rheumatic agents	Penicillamine, chloroquine
Cardiovascular agents	Antiarrhythmics (e.g., lidocaine, procainamide, quinidine) Beta-blockers (e.g., atenolol, propranolol) Calcium channel blockers (e.g., verapamil) Diuretics
Anticonvulsants	Barbiturates, benzodiazepines, gabapentin, phenytoin
Others	Magnesium salts, lithium, corticosteroid, estrogen, narcotics

Management of myasthenic Crisis

- General Airway assistance and ventilation
- $\bullet \;\;$ Discontinue anticholinesterases and any offending drug (e.g. antibiotic, $\beta \cdot \;$
- Cardiac monitoring Identify and treat infection
- Prophylaxis for deep vein thrombosis
- Initiate specific treatment Plasma exchange (removal of 1–1.5 times plasma volume on each session x5) Intravenous immunoglobulin (0.4 mg/kg/day x5) High dose corticosteroids (prednisolone 1 mg/kg/day)

Focal neuropathies in ER

Acute compression	Entrapment neuropathy
Often abrupt onset	Slowly progressive
Severe weakness	Late feature of weakness
Less pain and sensory	Prominent pain and sensory

Radial neuropathy

- External compression at the spiral groove (Saturday night palsy)
- DDx with central lesion
- Supportive wrist and finger extension brace

Foot drop in Peroneal neuropathy

- External compression at the fibular head
- Weak ankle dorsiflexion and eversion with preserved plantar flexion and inversion
- Sensory abnormality in dorsum of foot

Commonly prescribed steroid

Corticosteroids	Glucocorticoid potency	Equivalent dose (mg)	Minelarocorticoid potency
Short	poteries	(116)	potency
Cortisol (hydrocortisone)	1 -	20	Yes (1)
Prednisone	4	5	No
Prednisolone	4	5	No (0.8)
Methylprednisolone	5	4	No (0.5)
<u>Intermediate</u>			
Triamcinolone	5	4	No
Long			
Betamethasone	25	0.6	No
Dexamethasone	30	0.75	No (<0.2)

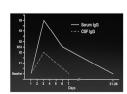
 $\label{eq:methylprednisolone} \textit{Methylprednisolone} \; \textit{1g} \; = \; \textit{Prednisolone} \; \textit{800} \; \textit{mg}, \quad \textit{Dexamethasone} \; \textit{16} \; \textit{mg} \; = \; \textit{Prednisolone} \; \textit{120} \; \textit{mg}$

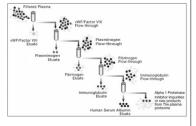
Steroid pulse therapy

- Infusion of a large dose of corticosteroid (1g methylprednisolone over 30 min)
- Adverse effect

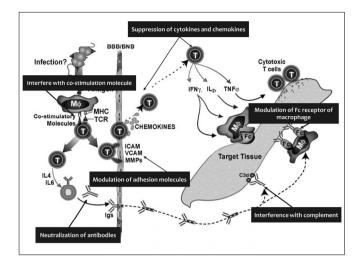
Sudden death / ventricular dysrhythmia

Severe infection


Hyperglycemia / Pancreatitis


Gastrointestinal hemorrhage

Acute psychosis


IV Immunoglobulin

- Cold ethanol fraction of human plasma derived from pools of 3,000~10,000 donors \rightarrow stabilized with glucose, maltose, glycine, sucrose, mannitol or albumin
- IgG (95%), IgA (2.5%), IgM
- Half life: 18-32 days

→ MEMO →

Administration of IVIg

- Dosage: 2g/kg (0.4g/kg for 5 days) or 1g/kg for 2 days
- Common minor adverse effect Headache, chill, myalgia, fever, fatigue
- Major adverse effect Thromboembolic event, aseptic meningitis Severe anaphylactic reaction (in case of severe deficiency of IgA) Renal tubular necrosis: reversible, pre-existing kidney disease or dehydration
- No need to pretreatment of steroid or antihistamine