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Precision treatment in neurology

Byung-Ok Choi, M.D.

Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine

There is a growing interest in precision medicine treatment. Among the diseases likely to be targeted for precision medi-
cine treatment is hereditary peripheral disease. In genetic diseases, gene mutation is the most important, causing disease;
therefore, gene therapy can be used to treat it by precision medicine. However, in the case of complex diseases, it is not
easy to control because there are not only genetic causes but also environmental epigenetic factors. Hereditary periph-
eral neuropathy (HPN) has more than 100 causative genes known. So far, several treatment options for HPN have been
developed and clinically evaluated using small molecules, but gene therapy-based treatment strategies have not been ac-
tively attempted, because this may be mainly due to the inheritance manner of HPN. Given that gene therapy for genetic
diseases began with the simple idea of replacing defective genes with functional replication, the clinical modality strategy
is more difficult, as the majority of the causative mutations of HPN lead to gain-of-function rather than loss-of-function.
Recent advances in genetic engineering techniques have brought new approaches to gene therapy to clinical applications
in HPN therapy. In this review, we reviewed the precision medical treatment of hereditary peripheral neuropathy.
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Introduction

Treatment options for hereditary peripheral neuro-
pathy (HPN) are very limited. Although several at-
tempts have been made to reduce or improve disease
phenotypes through validation in animal studies, the
clinical benefits are still uncertain. For example, the
therapeutic efficacy of vitamin C has been shown to be
successful in rodent models, but clinical trials have not

demonstrated its efficacy."” Recently, a new combina-
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tion of baclofen, naltrexone hydrochloride and D-sor-
bitol, PXT3003 is under clinical evaluation, but clinical
benefits need to be submitted.>* Unsatisfactory results
in clinical practice may be attributed to inappropriate
approaches to treating the disease. These approaches
focus on the regulation of disease phenotypes by in-
directly reducing the expression of toxic proteins or
improving myelination. Therefore, direct manipu-
lation of mutant gene expression should be considered
to obtain acceptable therapeutic efficacy.

The disease was first described from the 19th cen-
tury, but the first causative gene was isolated in
1991.® However, the advent of next-generation se-
quencing (NGS) technology has accelerated the identi-
fication of causative genes and more than 100 distinct

genes have been raised as causative genes for HPN.’
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Among the numerous causative genes, the prevalence
of several genes, such as peripheral myelin protein 22
(PMP22), myelin protein 0 (MPZ), gap junction protein
beta 1 (GJB1), and mitofucin 2 (MFN2), are genetically
isolated total more than 80%.'°" Therefore, most stud-
ies of the revealed pathophysiological mechanisms and
development treatment options have been focused on
these genes.

Applying gene therapy to genetic disorders is a basic
and simple strategy to overcome genetic defects.
Replacing the mutated gene with a functional replica
through gene transfer may be the ultimate treatment
strategy to reverse the pathogenesis of disease. Genetic
therapy-based treatment options are expanding with
new technological advances in genetic manipulation.
Current strategies in gene therapy can be categorized
into four types: gene replacement, gene addition, gene
knockdown or regulation of gene expression and gene
editing or correction.'*"” The simple delivery of func-
tional genes that manipulate the expression of mutated
genes with toxic functions or ultimately correct the
mutated genes with functional genes has become
possible. Although the application of gene therapy has
not been clinically attempted in HPN patients, break-
through advances in gene therapy based therapies with

the greatest therapeutic benefit for HPN are expected.

Precision medical treatment of peripheral neuropathy

Most genetic diseases are caused by a single genetic
defect, so replacing a defective gene is a simple
approach. Therefore, most gene therapy studies focus
on gene replacement in recessive genetic diseases.
Recently, several genetic replacement methods have
been attempted in autosomal recessive and X-linked
HPN cases by the European research group. For auto-
somal recessive cases of HPN, the efficacy of gene re-
placement therapy for SH3TC2 (SH3 domain and tetra
tripeptide repeat 2) mutations in HPN was evaluated.'®
SH3TC2 protein is mainly expressed in myelinating

Schwann cells and the loss of functional mutation of
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the SH3TC2 gene contributes to the development of
CMT type 4C, a recessively inherited demyelinating
neuropathy.” They generated lentiviral vectors ex-
pressing the SH3TC2 gene under the control of the Mpz
promoter, a Schwann cell specific promoter.
Intrathecal injection of the lentivirus engineered to
express the target gene was effectively delivered to
Schwann cells in the mouse model and rescued the
neuropathic phenotype. After 8 weeks, the mutant
mice, exhibited improved myelination in the lumbar
spinal roots and sciatic nerves and the motor behavior
was also enhanced. Intriguingly, the same group also
tried gene replacement therapy to the X-linked domi-
nant type of HPN. GJB1 gene mutations cause loss of
Connexin 32 (Cx32) in the gap junctions leading to a
severe form of inherited demyelinating CMTX1
neuropathy.”’ The mutations in GJB1 cause dysfunc-
tion of Cx32 protein localizing in the paranodal loops
of non-compact myelin and the Schmidt-Lanterman
incisures in Schwann cells, which leads to demyelinat-
ing neuropathy.” Although the GJB1 mutation caused
phenotype is considered as dominantly inherited, the
clinical phenotypes are dramatically different accord-
ing to gender. The affected female with the hetero-
zygosity in GJB1 mutation exhibit later onset with mild
phenotype compared to affected male with hemi-
zygosity due to X-inactivation.”” For the validation of
therapeutic effect of gene replacement, they utilized
GJB1-null/Cx32 knockout (KO) mice which exhibit se-
vere demyelination as well as inflammation in the pe-
ripheral nerve.” Intraneural injection of lentivirus ex-
pressing GJB1 by MPZ promoter (LV. Mpz-GJB1) before
the phenotype onset of GJBl-null mice significantly
reduced the inflammation and ameliorated the periph-
eral neuropathic phenotype.24 In the following study,
they also validated the efficacy of intrathecal delivery
of LV. Mpz-GJB1 in the same mouse model.” As intra-
thecal administration is less invasive than the intra-
neural delivery, the clinical feasibility of gene therapy
is better improved for the demyelinating neuropathy.

Recently, the same group also demonstrated that the
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therapeutic benefit can be secured even the gene ther-
apy is performed after the onset of peripheral neuro-
pathic symptom.”® These results increase the possi-
bility of the successful clinical outcomes in future clin-
ical trials for CMT1X patients.

Although demyelinating neuropathy occurs mainly
due to dominant inheritance, one research group have
consistently developed a phenotype modulating strat-
egy using a neurotrophic factor. Nerve growth factor,
brain-derived neurotrophic factor, neurotrophin-3
(NT-3), and neurotrophin-4/5 are well-known nerve
growth factors which bind to a protein tyrosine kinase
receptor and activate the downstream signaling path-
ways in the neuronal cells.”’ When NT-3 was subcuta-
neously administered into Tr-] mouse model, a mouse
model of demyelinating neuropathy with naturally oc-
curred Leul6Pro mutation in PMP22 gene, the num-
bers of myelinated fiber forming regeneration units as
well as axonal regeneration was elevated.” In the same
report, the clinical efficacy of NT-3 in the CMT1A pa-
tients was also evaluated. The patients treated NT-3
exhibited enhanced nerve regeneration in the sural
nerve. In the following study, they observed that ad-
ministration of agonistic antibodies to TrkB and TrkC,
NT-3 receptors, improved the neuropathic phenotype
of a Tr-J mice.” Recently, as the long-term treatment
of NT-3 is not clinically achievable due to its short
half-life, they evaluated the gene delivery of NT-3 with
recombinant adeno-associated virus (rAAV).*® The in-
tramuscular delivery of rAAV-NT-3 sustained the re-
lease of NT-3, which promote active myelination and
nerve regeneration in Tr-J] mice. The clinical benefit of
neurotrophic factors in modulating the disease patho-
genesis of the demyelinating neuropathy was also ob-
served from other researchers. Administration of neu-
regulin-1 enhanced the myelination via stimulation of
myelination pathways in the rodent models.>"**

As the mutation of a gene is translated into mutant pro-
teins via mRNA intermediate, inhibiting the translation
of mutant mRNA into mutant protein can be a potential

therapeutic target for HPN. For this strategy, utilization
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of RNA interference (RNAI) is well studied. Small inter-
fering RNA (siRNA) is a short double-stranded RNA with
19-22 nucleotides long® which can abrogate the gene
expression by breaking down the mRNA transcripts with
a sequence-specific manner. Recently, siRNA-based
technique has been one of the powerful research tools
for gene silencing in both basic and therapeutic research
field. 4 By the introduction of siRNA or short hairpin
RNA (shRNA), the gene expression level can be success-
fully modulated. In addition, the sequence-specific tar-
get mRNA breakdown enables easy discrimination of
mutant allele from the wild type sequence in the genetic
disorders. Since the dominantly inherited genetic dis-
orders are caused by the toxic gain-of-function muta-
tions rather than loss-of-function mutation in re-
cessively inherited genetic disorders, mutant allele-spe-
cific targeting might be the primary therapeutic target
rather than the addition of normal genes. Therefore,
siRNAs are apt for specific targeting and silencing of
the mutant allele in dominantly inherited disorders in-
cluding neurodegenerative diseases such as Alzheimer's
disease, Parkinson’s disease, Huntington's disease,
Machado-Joseph disease, and amyotrophic lateral
sclerosis.

For HPN treatment, Lee et al. evaluated the efficacy
of mutant allele-specific siRNA using Tr-] mice. They
designed and isolated the mutant allele (c.47T)C,
p.Leul6Pro in mouse Pmp22)-specific siRNA for Tr-]
mice and evaluated the potency of allele specificity
both in vitro and in vivo. They revealed that admin-
istration of allele-specific siRNA alleviates the neuro-
pathic phenotype of Tr-J mice by improving the myeli-
nation and restoring the muscle volume. In the sciatic
nerve of the treated mice, the expression level of mu-
tant mRNA was reduced, whereas that of wild-type al-
lele was increased. In this experiment, they validated
the efficiency of the non-viral delivery method for
HPN gene therapy for the first time, which would be a
helpful information for future clinical applications. In
addition, they also provided a couple of potent al-

lele-specific siRNAs for human patients with same mu-
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tation in PMP22 (CMT type 1E). These results implicate
that the targeting mutant allele with specific siRNA
might be a potential therapeutic option for dominantly
inherited HPN.

CMTIA is the most frequent type of HPN with de-
myelination of Schwann cells due to a 1.5-fold over-
expression of the PMP22, a myelinating protein. As the
incidence of CMT1A is over 40% of total HPN, most of
the research has been focused on the exploration of
novel agents which can decrease the expression level
of PMP22. By developing high-throughput screening
method and by the aid of systems biology, a couple of
research group isolated several repurposed drugs or
their combination.>*' However, the mode-of-action as
well as the potency of drugs in downregulating PMP22
expression is still unclear. Recently, two independent
groups developed novel gene therapies which directly
manipulate the gene dosage of PMP22. One group iso-
lated novel microRNAs (miRNAs) which specifically
target 3 '-untranslated region (3'-UTR) of PMP22
mRNA and the other screened antisense oligonucleo-
tides (ASO) which successfully downregulates PMP22
levels.

MicroRNAs (miRNA) are endogenous small non-
coding RNAs of approximately 22 nucleotides in
length.”” miRNAs readily bind to the 3’ untranslated re-
gion of the target mRNAs thereby inducing the degra-
dation of their targets. In addition, miRNAs regulate
gene expression by acting as modifiers in silencing the
overexpressed genes. The significance of regulatory
function of miRNAs in the development of the periph-
eral nervous system has been investigated. Ablation or
reduction of Dicer from Schwann cells can impair nor-
mal myelination and axonal integrity.“’45

Regarding PMP22 gene expression, several miRNAs
such as miR-9 and miR-29b are known to post-tran-
scriptionally target 3'untranslated region (3" UTR) of
PMP22.% Since miRNAs have great potential in regu-
lating the expression level of target mRNAs, targeting
PMP22 with its specific miRNA might be an excellent
therapeutic option for controlling CMT1A caused by
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PMP22 overexpression. In this context, Lee et al. re-
ported that the administration of miRNAs down-
regulated the Pmp22 expression levels in CMT1A
mouse model.” They found that the expression level of
several miRNAs are changed and miR-381 and miR-9
can modulate the expression level of PMP22. Using
lentiviral system, LV-miR-381 as well as LV-miR-9
were administered into the sciatic nerve of the C22
mice which harbors 7 copies of human PMP22 gene
and expression level of hPMP22 is 1.7 fold higher than
mPMP22. %0 Expression of both miR-381 and miR-9
enhance the locomotor function, electrophysiological
integrity (motor nerve conduction velocity and com-
pound action potential), and myelination through the
reduction of PMP22 level in the sciatic nerve of the C22
mice. This report opens a new way for developing po-
tential HPN therapeutic strategies using miRNA-medi-
ated regulation of gene expression.

RNA transcript can be modulated by ASOs which are
synthetic nucleic acids with a single strand and readily
binds to the target mRNA resulting in the degradation,
interference with pre-mRNA processing or protein
binding, and alteration of RNA structure.”’ Recently,
the application of ASOs becomes emerging tool to
manage various degenerative neuromuscular diseases.
The clinical application of ASOs have exhibited suc-
cessful outcomes in spinal muscular atrophy (SMA) and
Duchenne's muscular dystrophy (DMD) by modulating
the splicing of the mRNA.>*™

The suppression of the PMP22 expression can be
achieved by the hybridization of ASO which results in
specific inhibition and degradation of PMP22 through
the endogenous RNase H activity. Zhao et al. inves-
tigated the potency of PMP22 targeting ASOs in re-
ducing the protein expression using two rodent models
for CMT1A.”” After ASOs treatment both mouse and rat
models of CMT1A showed a 35% reduction in PMP22
mRNA, which result in slowing the disease progression
as well as improvement of the CMT1 phenotypes. They
also suggest that the skin biopsy samples are ideal for
detecting the mRNA level of PMP22 and could serve as
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a useful biomarker for future clinical trials on CMT1A
based on the evidence of the decreased PMP22 mRNA

levels in the skin.

Discussion

Through recent advances in genetic engineering tech-
niques, novel gene therapies have been developed and
evaluated for HPN using animal models. In order to effec-
tively translate the valid preclinical results of gene ther-
apy into clinical benefits for HPN patients, several as-
pects must be considered, such as ensuring efficacy and
safety. We must carefully consider the selection of deliv-
ery vectors and route to improve the efficacy of gene
therapy. Viral vectors have generally been used for the
delivery of target genes. Virus delivery provides tissue-spe-
cific targeting, long-term effects, and large-scale feasi-
bility for cargo genes, but there is still a risk of tox-
ic-mediated immunotoxicity that can interfere with
treatment outcomes. On the other hand, gene sup-
pression mediated treatment strategies require relatively
short nucleotides compared to the delivery of the whole
gene, which allows in vitro synthesis of therapeutic
agents and non-viral delivery. In gene therapy for HPN,
all gene delivery strategies use Lentivirus or AAV, where-
as most gene suppression methods use non-viral
methods.

In addition, the determination of the delivery route is
an important part of the efficacy and feasibility of gene
therapy. Since the target tissue of HPN is the peripheral
nerve, the best efficacy can be achieved by intranervous
delivery. However, administration of therapeutic agents
directly to the peripheral nerves can damage tissues that
can worsen the disease phenotype. In this aspect, intra-
thecal or subcutaneous delivery may be an alternative
option for HPN treatment. In the case of gene sup-
pression strategies for target genes using siRNA, miRNA,
ASO and CRISPR / Cas9 systems, securing safety is also
an urgent task. Although most gene suppression strat-
egies have demonstrated sequence-specificity in vitro

and in vivo, the risk of unexpected results due to off-tar-
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get effects still exists in human clinical trials. Therefore,
further investigation is needed to verify safety.
Breakthrough advances in RNA interference or oli-
gonucleotide-based therapies as well as genome edit-
ing technologies have developed new treatment op-
tions for HPN. In particular, the development of new
treatment options for CMT1A can be beneficial to mil-
lions of patients with the same mutation in PMP22. The
final interpretation of this intuitive concept into reality
is a long way, but this meaningful innovation is ex-
pected to greatly expand the scope of gene therapy in

the near future.
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