딥러닝의 이해

김 건 희

서울대학교 컴퓨터공학부

Understanding of deep learning

Gunhee Kim

Seoul National University, Computer Science and Engineering

Outline

- · Introduction to Deep Learning
- · Recent Applications of Deep Learning

Deep Learning

One of the hottest buzzwords in both academia and industry

TensorFlow
Google DeepMind
Google

Baidu
Microsoft
NVIDIA
3

Peep Learning for Image Classification

Representation learning attempts to automatically learn good features or representations

Feature learning problem

• Suppose we want to classify images whether they are faces or not

• Can we represent images using 100 real numbers?

Can we find a good one?

89 91

(Deep) Hierarchical Compositionality Vision Pixels → Edges → Texton → Motif → Part → Object Speech Sample → Spectral → Formant → Motif → Phone → Word band Natural language Character → Word → NP/VP/... → Clause → Sentence → Story

Why Now? Many training data available Changes in computing technology favor deep learning • Multi-core CPUs and GPUs • Uniform parallel operations on dense vectors are faster

Limitation – 1. Need Many Clean Training Data Machine translation is so successful. Then how are about the other NLP tasks? • Google Neural Machine Translation system (GNMT) in 2016/09 Spell checking • In Google News, 곱배기 (254 results) vs 곱빼기 (683) • 외래어 표기법: 루이비통 vs 루이뷔통, 마를린 먼로 vs 메릴린 먼로 Sentiment analysis • Dorothy Parker on Katherine Hepburn:

"She runs the gamut of emotions from A to B"

https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

Limitation – 4. Lack of Semantic Information Human can learn a new class even with a single image • Suppose my kid knows jaguar, and leopard, and see a picture of cheetah for the first time Does it have a tail? Does it lay the egg? How does its foot look like? Generalization / Specialization • First do categorization by finding commonality (it's a big cat) • Then focus on its differences in the group (e.g. tear marks, patterns, ears, ...)

Limitation - 4. Lack of Semantic Information

DL models require a large amount of training data

- · Knowledge transfer is difficult
- Collect training data of a new class again...

of Jaguar

of Cheetah

Promising research directions

· Zero-shot/one-shot learning, transfer learning, multi-task learning, semi-/unsupervised learning...

Limitation – 5. Interpretability/Explainability

Deep networks are widely regarded as black boxes but are often more accurate

- State-of-the-art CNNs often include 10~100 millions of parameters to learn
- It is hard to know what happens inside the model

Limitation - 5. Interpretability/Explainability

Deep networks are very inferior to explain what they did

- · Explainability-Accuracy trade-off
- Explainable AI should be essential; users are to understand, trust, and effectively manage

Why did you do that? Why not something else? When do you succeed? When do you fail? When can I trust you? How do I correct an error?

Because it maximizes the winning possibility ...

Outline

- · Introduction to Deep Learning
- · Recent Applications of Deep Learning

Language Translation Google Neural Machine Translation system (GNMT) • Released in September 2016 · Recurrent Neural Networks (RNNs) as the base method, and many solutions (e.g. handling rare words and language-specificity) https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

