Nystagmus part 2. central vestibular disorders

최 정 윤

서울의대

Jeong-Yoon Choi, MD, PhD

Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea

Contents

- I. Nystagmus from central vestibular system:
- II. Nystagmus from abnormalities of the visual system
- III. Nystagmus from gaze-holding system
- IV. Nystagmus from vergence eye motion
- V. Congenital nystagmus

Contents

- I. Nystagmus from central vestibular system:
- II. Nystagmus from abnormalities of the visual system
- III. Nystagmus from gaze-holding system
- IV. Nystagmus from vergence eye motion
- V. Congenital nystagmus

Nystagmus from central vestibular system:

- 1) DBN
- 2) UBN
- 3) Torsional nystagmus
- 4) Horizontal nystagmus
- 5) Seesaw/Hemi-seesaw
- 6) Periodic alternating nystagmus / Windmill nystagmus

Nystagmus from central vestibular system:

1) DBN

Best evoked on looking down and laterally

Slow phases may have linear-, increasing-, or decreasing-velocity waveforms

May be precipitated or exacerbated or changed in direction, by altering head position, vigorous head-shaking (horizontal or vertical), or hyperventilation

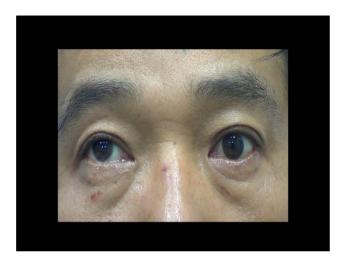
Gerebellar degeneration, 2017a inchulung familial epischek atank, 30% parancoplastic degeneration, 2007a and multiple system arcpity) of Caminectural amounts, including Armid-Lihari malformation, Page's chooses, bashar incuplanton, and yringshouses, including Armid-Lihari malformation, Page's chooses, bashar incuplanton, and yringshouses, bashar incuplanton, and yringshouses, bashar incuplanton, and yringshouses, bashar incuplanton, and produced and produc

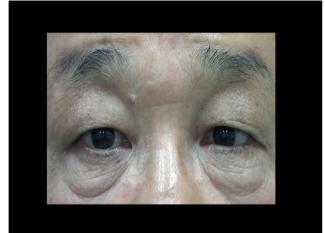
Nystagmus from central vestibular system:

2) UBN

Present in center position; usually increases on looking up

Slow phases may have linear-, increasing-, or decreasing-velocity


Infarction of medulla^{57,114,329,365,390,666,671} or cerebellum and superior cerebellar peduncle^{75,742}


Wernicke's encephalopathy^{150,229,381,665a,744}
Multiple sclerosis^{229,461,516}

Tumors of the medulla, ^{220,250} cerebellum, ^{210,675} or midbrain ^{500,680} midbrain^{200,580}
Cerebellar degenerations^{541,262} or anomalies^{547,a}
Brainstem encephalitis²⁸³
Creutzfeldt-Jacob disease^{74,da}
Behcet's syndrome^{27,1}
Meningtis²³³

Meningitis³³
Leber's congenital annaurosis and other congenital disorders of the anterior visual pathways³²
Thalamic arteriovenous malformation³³⁹
Congenital³³⁸
Organophosphate poisoning³⁶⁶
Tobacco⁴⁶⁷

Associated with middle ear disease²⁷⁹ Transient finding in infants³⁴²

Nystagmus from central vestibular system:

3) Torsional nystagmus

Torsional jerk nystagmus (minimal vertical or horizontal components) present with eye close to central position

Slow phases may have linear-, increasing-, or decreasing-velocity waveforms

Poorly suppressed by visual fixation of a distant target

Often occurs in association with ocular tilt reaction or $unilateral\ internuclear\ ophthalmoplegia$

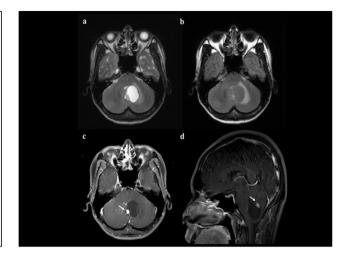
Syringobulbia, with or without syringomyelia and Arnold–Chiari malformation 709

Brainstem stroke (e.g., Wallenberg's syndrome) 491 Arteriovenous malformation in the brainstem 491,509 or middle cerebellar peduncle 232 Brainstem tumor 453

Multiple sclerosis⁴⁵³

Congenital

Oculopalatal tremor ("myoclonus")⁵³ Head trauma⁴⁵³



Nystagmus from central vestibular system:

4) Horizontal nystagmus

Central vestibular disturbances occasionally cause nystagmus that is horizontal (when the eyes are close to central position).

Patients with horizontal nystagmus that is present in the central position should be always be observed for a period of several minutes to exclude the PAN.

Nystagmus from central vestibular system:

5) Seesaw / Hemi-seesaw nystagmus

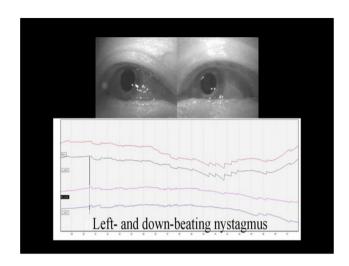
Waveform may be pendular (seesaw); or jerk (hemi-seesaw), in which the slow phase corresponds to one half-cycle $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2}$

Hemi-seesaw form associated with ocular tilt reaction and other manifestations of otolithic imbalance

Pendular seesaw form associated with bitemporal hemianopia, chiasmal disorders, visual loss

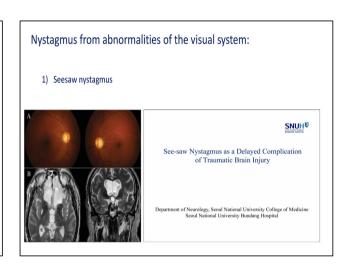
Nystagmus from central vestibular system:

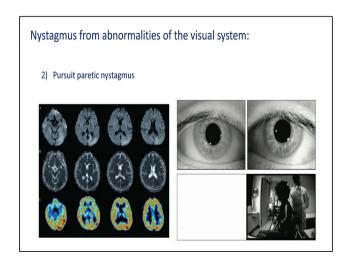
6) Periodic alternating nystagmus

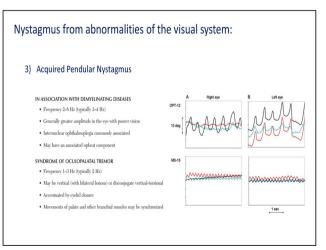

Horizontal nystagmus, reverses direction approximately every 90–120 seconds

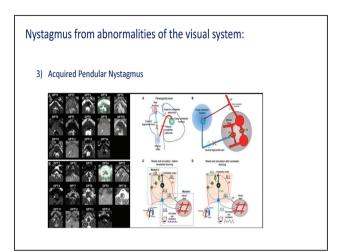
Nystagmus cycle is usually little affected by visual fixation

Vestibular stimuli, such as head rotations, can change or transiently stop nystagmus

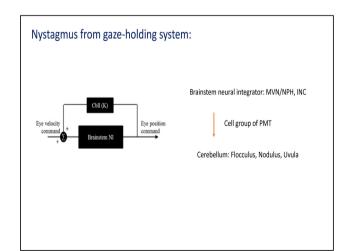

Downbeat nystagmus and square wave jerks may become more obvious in the brief null period when the horizontal nystagmus wanes and then reverses $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1$

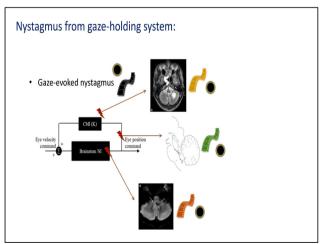





Contents I. Nystagmus from central vestibular system: II. Nystagmus from abnormalities of the visual system: III. Nystagmus from gaze-holding system IV. Nystagmus from vergence eye motion V. Congenital nystagmus

Nystagmus from abnormalities of the visual system: Localization: Eye or optic tract, 1) Seesaw nystagmus Optic chiasm, 2) Pursuit paretic nystagmus Posterior cortical area, 3) Acquired Pendular Nystagmus Cortico-ponto-cerebellar or Olivocerebellar projections





Contents

- I. Nystagmus from central vestibular system:
- II. Nystagmus from abnormalities of the visual system:
- III. Nystagmus from gaze-holding system:
- IV. Nystagmus from vergence eye motion
- V. Congenital nystagmus

Contents

- I. Nystagmus from central vestibular system:
- II. Nystagmus from abnormalities of the visual system:
- III. Nystagmus from gaze-holding system:
- IV. Nystagmus from vergence eye motion
- V. Congenital nystagmus

Nystagmus from vergence eye motion

Convergent-Divergent pendular oscillations

Convergence-retraction nystagmus

Nystagmus from vergence eye motion

Convergent-Divergent pendular oscillations

Convergence-retraction nystagmus

Contents

- I. Nystagmus from central vestibular system:
- II. Nystagmus from abnormalities of the visual system:
- III. Nystagmus from gaze-holding system:
- IV. Nystagmus from vergence eye motion:
- V. Congenital nystagmus:

Congenital nystagmus

- 1) Infantile nystagmus syndrome
- 2) Latent nystagmus and Fusional maldevelopment nystagmus
- 3) Spasmus nutans

Congenital nystagmus

1) Infantile nystagmus syndrome

Present since infancy

Usually conjugate, horizontal; smaller torsional or vertical components

Pendular or increasing-velocity waveforms punctuated by foveation periods, during which eyes are transiently still and aimed at the object of interest $\,$

Accentuated by visual attention or arousal

Null zone

Congenital nystagmus

2) Latent nystagmus (fusional maldevelopment nystagmus)

Present since infancy; associated with strabismus and lack of binocular vision

Conjugate, horizontal nystagmus beating away from covered eye

Slow phases may have linear-, or decreasing-velocity waveforms

Smooth pursuit asymmetry, depending on viewing eye and on-going nystagmus

Associated with dissociated vertical deviation (eye under cover deviates up)

Contents

- I. Nystagmus from central vestibular system:
- II. Nystagmus from abnormalities of the visual system
- III. Nystagmus from gaze-holding system
- IV. Nystagmus from vergence eye motion
- V. Congenital nystagmus